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SUMMARY

This paper presents a proposed set of acceptance-sampling plans for
life testing and reliability when the underlying life distribution is of
the Weibull form. Inspection of the sample is by attributes with the
life test truncated at a preassigned time, t. A set of conversion tables
is also provided from which attribute sampling-inspection plans of any
desired form may be designed for the Weibull model or froﬁ which the
operating characteristics of any given plan may be determined. A pro-
cedure using these tables for applying the MIL-STD-105B plans to reliabili-

ty and life-testing applications is included.




INTRODUCTION

The paper is a generalization of papers by Sobel and Tischendorf1
and by Epstein2 that appeared respectively in the Proceedings of the
Fifth and Sixth National Symposium on Reliability and Quality Control in
Electronics. Related work has also been done by Gupta and Groll3 who
have extended the Sobel and Tischendorf procedures from the exponential
form to the gamma form. The gamma variasble is the sum of exponential
variables and hence the exponential model is a special case of the gamma.
In the two papers first cited the authors assume that the underlying life
density is exponential (Eqs 1) whereas in this paper thg Weibull form is
assumed (Eqe. 2). The exponential distribution is a special case of the
Weibull and so will be covered in the plans and conversion tables.

f(x) = (1/u) exp [-x/ul, u >0, x>0 (1)

t(x) = (B/n )(x/q P! exp [-(x/n)a 1, n>0, B>0, x>0 (2)

Both f(x) are equal to zero, otherwise. In these and the equations that
follow, X is a random variable which represents item life for which x
is its value, pu represents mean item life for the population, and B

is the symbol for the shape parameter for the Weibull distribution. For
simplification in discussion and computation, the characteristic life,

Ay

n has been used. For the Weibull distribution

n=pw/0(/8 + 1) (3)
For further discussion of the Weibull distribution as a statistical model
for lifelength af components or Systems, reference may be made to a paper
by Kaoh in the Proceedings of the Sixth National Symposium on Reliability

and Quality Control in Electronics.




From Eq. (3), it will be noted that for a given n the Weibull mean
life depends on the shape parameter, B. The effect of differences in the
parameter on the shape of the distribution, as well as the general nature
of the Weibull model, may be observed by study of Figure l. In this
figure the Weibull probability density function has been plotted for
various value of B. A plot for B = 1, the exponential case, has been in-
cluded for reference. This initial set of Weibull sampling plans is for
product for which the value of this parameter is known or can be assumed
to approximate some given value. Conversion tables and sampling plans
are provided for nine values for B ranging from 1/3 to 5.

A relatively small number but a broad range of values for P was
selected for this initial study. The principal objectives were to develop
practical methods and techniques and to explore the effect of differences
in value for this parameter (which is the key one for the Weibull distri-
bution). As the use of this distribution as a statistical model increases,
additional conversion tables and sampling inspection plans may be con=-
structed for intervening values for B, particularly in the widely encoun-
tered region ranging from 1/2 to 2.

For the procedures and plans developed in this study, lot or product
quality is evaluated in terms of mean item life, pu. OSubsequent work has
been planned in which related conversion tables and sampling inspection
procedures will be developed for application when lot quality must be
evaluated in terms of the instantaneous failure rate, Z(t), at some

specified life or future time, t.
FORM OF ACCEPTANCE CRITERIA

For the plans considered in this paper, the following acceptance-

sampling procedure for life testing has been assumed:
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l. Select a random sample of n items from the lot.

2. Put the sample items to life test for some preassigned period
of t time units.

3+ Denote by y the number of failures observed prior to time t.

4o Accept the lot if ¥ 3 ¢, the acceptance number; if y> ¢,
reject the lot.

Curtailed inspection for accepting lots prior to t is possible for the
rejection of the lot since it is possible to observe (¢ + 1) failures
before time t,

Note that this acceptance procedure is the same as that specified for
the MIL-STD-IOSBS sampling plans with the exception of the introduction
of a testing truncation time, t. It is also possible (as for the 105-B
pPlans) to employ double or multiple sampling instead of single gampling
as described above and by so doing reduce the average number of items
at pt = AQL that must be put on life test. However, the "economy" achieved
is at the expense of longer elapsed testing time.

The probability of acceptance for a lot, P(A), under plans of the
above form depends on the probability, p!', of item life being less than
(or equal to) the test truncation time, t. For cases for which g is
known and with time, t, preassigned, p' is thus a function of mean item
life, w, only. The operating characteristics of any specified plan thus
depend only on t and p. In order to Provide tables for general use in
the design or evaluation of Plans for any application rather than working
in terms of specific values for t and By the dimensionless ratio t/p will
be used. In application of the Plans or tables to a specific application,

conversion between the ratio and specific t and p values is extremely

easy.




A set of conversion tables has been computed to provide for the Weiw
bull distribution the connection between the dimensionless quantity t/u
and p! (Tables 1 and 2). With these tables acceptance-sampling plans of
desired form can be designed or evaluated using attribute sampling theories
and practice.

For cases for which the lot size, N, is large in relation to the
sample size, n, the number of failures prior to t approximates the bie-
nomial distribution with parameters n and P', where p! is defined as the
area under the life-length distribution up to t. The pProbability of
acceptance P(aA) depends on the cumulative number of failures prior to time

t. This probability is given by

this paper except for cases for which the sample size is relatively largs,
For these, the Poisson distribution has been used as an approximation to
the binomial, The probability of acceptance for the Poisson is given by
PA) =P (ysc) = 5 JLopt)¥ ¢’ (5)
y=o0 y!

An important Potential use for the conversion tables provided in
this paper is in the adaptation of the MIL-STD-105B plans to reliability
and life-testing applications. In describing the operating characterise
tics of these 105B Plans, the quality of submitted lots is measured in
terms of p!, the per cent defective. With the conversion factors this
form of description may be converted directly to measurement in terms of
the t/u ratio. With this conversion the 105B plans may be cataloged for

appropriate choice in reliability applications. (Plans have been made
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for the preparation of tables listing for various values of B this ratio
at the AQL and the LTPD for each Plan in the 105B manual.) Alternatively,
if some 105B plan has been selected, its operating characteristic curve
may be determined in terms of the t/u ratio, or if the testing time, t,
has been specified, in terms of the 1ot mean, p. An example employing
Such a conversion is shown later in this paper. It should also be noted
that with the matching plans provided in the 105B collection, the options
of double-sampling and multiple-sampling are also available. The sample
sizes and acceptance numbers listed may be used and the established pro-
cedures for employing this form of sampling in attribute inspection may be

followed,
COMPUTATION OF CONVERSION TABIES

The probability, P', of an item failing before the end of test time
t is given by the cumulative distribution function (cedef.)s For the

Weibull model the equation for this function is
Cedefo = F(x) = 1 =« exp [-xB/Ot]. (6)
The equation for the mean s By of the Weibull distribution is

o!/P r(i/g +1) . (7)

“ =
Computations may be simplified by the following substitutions:
b = 1/ (8)
1/
n o= P (9)

Equation (6) then becomes -

F(x) = 1 = exp[-(x/n)!/], (10)




and Equation (7) becomes

B o= 0T (b+l)

(1)

The probability, p!, of an item failing before the end of test time B

t, is thus given by

F(t) = 1 = exp [~(t/n)"/%] o o
This may be rewritten as

/(1 -p%) = exp [(t/n)!?)

>

which in turn may be converted to

t/c
-1 @ -p") = (¢/n)"
where 1n denotes the Naperian logarithm,
Raising both sides of the above equation to the b power gives
)
[-tn(1-p"))" = t/q .
This equation may be solved for n to give
vk
n=t%/[-1n(1-p")]
But from Equation (11),
N = w/I(b+l)

Substitution of this value for n in Equation (16) gives:

Wr(b+t) =t/ [~1n(1-p')}° ,

or  t/u = [=1n(1-p*)1° / 1(bs1) .

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

This equation establishes the relationship between the dimensionless ratio

t/it and p!', the probability of item life being equal to or less than t.
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It may be noted that for the attribute form of gampling inspection
considered here, only this dimensionless ratio bétween test time, t, and
item mean life, p, need be of concern. The Weibull scals paraméter, «
(or ite equivalent characteristic life, n ) has been eliminated. In the
mathematics of these prlans and procedures it has'been assumed that the
Weibull lecation parameter, y,has a value of O, If in application,
however, y has some non-zero value, all that is necessary is to subtract
the value for y from the value for t to get to, and from the true lot
mean u, to get Hye These converted values, to and i s are then used for
all computations. Any solutions in terms of to or [, can be readily con-
verted back to real or absolute values by simply adding the value for v,
This procedure for handling the location parameter will be illustratqd
later in Example 3, Only the parameterp (or b, which is 1/8) must be
known, .

To put this relationship equation (Eq. 19) in a fopﬁ for which nu-
merical values for relationships may be more easily computed, the fol-

lowing change may be made:

t/n = ["n('-P')]b/P(b+l) =exp { In [-ln(l-p')]b]/r(b+l)

= exp{ b in [-In(i-p')]} /T(b+t) (20)
Values for the expression

In [-In (1 - p') ] (21)
were obtained from a table of the inverse of the cumulative probability

function of extremes prepared by the National Bureau of Standards.6
This table tabulates the function

y = -J.n(-lnoy). (22)



By substituting (1 - p!') for Qy the negative value of Expression 21 is
obtained. Values for e raised to this power were read from the National
Bureau of Standards tables of the exponential funct:i.on.7 Values for the
gamma function, I'(b # 1), were obtained from a table prepared by Dwight..8

A table of values for the per cent truncation, (t/u) x 100%, for
various values of p! has been prepared. It is presented as Table 1.
Values for p' range from .010% to 80% with the tabulated values selected
in accordance with a standard preferred number series. For convenience
in both tabulation and use, both the ratio t/u and p! are expressed as
percentages rather than decimal ratios.

For determining without interpolation the value for p! whgn some
rounded value for the (t/u) x 100 ratio is given, the relativgiy simple
task of preparing a table of p! has been carried out. Refer;‘ing to pre=-

vious equations it was noted that

t/u = [=1n(1-p")1%/1(b41) . £q. (20)

Raising each side of this equation to the B power gives

(t/) P= ~in(1-p* )T T(o41)1P . (@3)

From this, an expression giving the value for p! is found. It is

P! = 1-exp( ~(¥u)P [ ro+1) 1P} . (24)

The table of values for p! for various values for (t/u) x 100 is
presented as Table 2. Values for (t/u) x 100 range from .0l0 to 100,
Again, the values used for tabulation form a preferred number series.
With this altern.;te _t,able available together with the basic original one
(Table 1), a conversion may readily be made either way=--from (t/u) x 100
to p! or from p' to (t/u, x 100. Also, it will be noted that the two

9




supplement each other in that B values giving a compressed range of
figures in one table give an expanded range in the other. This allows
for somewhat more precise interpolation in conversion. The two together
Supply basic data for the design or evaluation of any life-testing and
reliability sampling inspection plan based on the Weibull (or exponen-
tial) distribution and of an attribute form. For general information, the
relationship between the (t/u) x 100 percentage and p! as given by these

two tables has been plotted in Flgure 2 for each of the various 8 values.,
ESTIMATION OF THE SHAPE PARAMETER

In many applications the shape parameter, B, may be known for the
product in question. From past analysis of life testing results, it may
be established that some value of known magnitude may be expected regularly

and so may be used in sampling inspection procedures. For example, for

a certain class of electron tubes of receiving type, Ka09 has found from

study of approximately 2,000 tubes of a variety of types and applications
that a value of 1.7 may be appropriate. For ball bearings, Lieblein and

0 found a mean value of 1.51 with 50% of approximately 5,000 bear-

Zelen1
ings tested having B in the interval 1.17 to 1.74.

For products for which the value for B is not known, this parameter
must be estimated using failure data from past inspection and researche.

Such data may be available in either grouped or ungrouped form.

Ungrouped Data

In this case the failure data will consist of the exact life length
of each of the r items that fail out of the n that are tested. These
life values may be listed in order and designated by the notation

< < < <

0 = x, = x ..= x = X » The method of maximum likelihood
§ 2 r-1 b o
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may then be applied and an estimate for B,(B), obtained by solving the

following equation:

r g 'B
Fooa " L x; In x. + (n-r) x_ In X
(Ir) { = x? + (n~r) xf } o o — - (25)

i=| r/B + Z In X,

Grouped Data

For this case the failure data Will consist of the numbers failing,
£, during each of a series of k conveniently chosen inspection time in-
tervals, z. This ordered paired data may be noted as zl, fl; 22, f2;

and where f. + f._ +

cees zk-l’ fk_l; Zyes fk where zy <22 "“<Zk 1 P

eree fk = r. The maximum likelihood estimate for the shape parameter

(and for the scale parameter, a, as well) are obtained by maximizing the

eXpression
é " -Z?‘l -Z?
K k
x - 3
Kk_( Z f-n)+ 2 ¢ inge e 8y (26)
o j=t J j=t J

For grouped data the method of minimized chi-squares may be used. Estie

mates for the two parameters are obtained by minimizing the expression
~-z" ~z"
k k —i ! —
2 . 0
f.) @ 4 » fj/ (e ©& =)

{n - -e
¢ j=1

J

HMx

(27)

Graphical Method

The above methods for estimation, it will be noted, are quite in-
volved. For accuracy and economy in computation a high-speed slectronic
computer must be used. However, a simple graphical method for estimation
of the Weibull parameters has been devised. Estimates are obtained by

Plotting failure data on Weibull probability paper. The method depends
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on the fact that the Weibull ¢.d.f., F(x), given by Eq. (6) becomes a

straight-line equation upon a double logarithmic transformation,
Thus

m' -lna+ﬁln(x). (28)

This Weibull paper has 1ln ln versus 1n coordinates so the c.d.f. will
plot as a straight line. Convenient scales are provided for direct
plotting of raw data and for obtaining the desired parameter estimates.
Further discussion of the above estimation methods may be found in
papers by Kao.h’ 1 Also, in a recent study by Weiss a method has been
determined that may be used to estimate this parameter by transformed

sample spacings,l2

USE OF THE CONVERSION TABLES

One form of application that should be of considerable use is that
of evaluating the quality protection afforded by a proposed or existing
acceptance-sampling plan. 4 possibility of immediate interest is the
use of a plan from the MIL-STD-105B Tables.

Example (1)

Suppose, for example, that a 105B plan with an Acceptable Quality
Level (AQL) of 2.5% and Sample Size Letter J has been proposed for
use. Reference to the 105B Tables shows that for single sampling a
sample size of 75 items and an acceptance number of | is specified.
Suppose life testing time is to be 80 hours with simply a count made
of the test items failing by the end of that period. From inspection
experience with the product to which the plan is to be applied, it
Seems most appropriate to assume a Weibull distribution with a value

forP of 1 2/3. The lot size will be relatively large compared to
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the sample size of 75 so binomial probabilities for sample items can
be assumed. Ac#ually, Table III of MIL-STD-105B specifies that the lot
size should be from 1300 to 3200, 501 to 800, and 181 to 300 for
Inspection Levels I, II, and III respectively.

The first step is to determine the pProbability of acceptance,
P(A), for various values of p's These probabilities can readily be
obtained from any one of the readily available tables of the cumulative
binomial terms or tables of the incomplete beta distribution. They may
also be read from the operating characteristic curves published as a
part of the MIL-STD-105B Tables. A few of these values for this plan
are shown in the first and second columns of the tabulation below.
Next, the first of the conversion tables, Table 1, is used to obtain
values for the ratio (%/u) x 100 for each of the p'! values. These
table values are listed in the third column, Finally, using the value
for t of 80 hours each of the (t/p) x 100 ratios are converted to
values for p. For example, the ratio for a p! of 5% is 18.84. Thus
(80/1) x 100 = 18,8 or p = 425 hours. These computations have been
made with results as shown in the last column. One may now note that
if a lot is subtmitted to this plan whose mean life is 215 hours, the
Probability of its acceptance is only .0l or one in a hundred; on the
other hand, if the mean life for a lot is 745 hours the probability
of acceptance is .98. Thesse pProbability and mean life figures based
upon t = 80 hours can be plotted, if desired, to give the operating
characteristic curve. (Of course similar OC curves for other known
values of t may be plotted.) This curve is the one ghown for g = 1 2/3

in Figure 3,
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p' (in %) P(a) (t/u) x 100 m

2 .98 10.77 745
3 «92 13.78 580
L .82 16.42 Ls0
S +68 18.84 L2s
6 1/2 BT 22.15 360
8 27 25,20 315
10 012 29,01 275
12 0L 32,58 245
15 .01 37.63 21y

To indicate the importance of considering the shape of the life
density for a product, operating characteristic curves for this plan
have been computed and plotted in Figure 3 for other selected values for
. Included is a curve for the case in which B equals 1. This repre-
sents the exponential distribution widely used as a model in reliability
and life-testing sampling inspection. From these curves it may be noted
that if the underlying distribution is actually of the Weibull form and
the exponential is assumed, the actual operating characteristics of the
plan may differ very much from those contemplated. A discussion of the
sensitivity of statistical procedures in current use to departures from
the assumed exponentiality will be found in a paper by Zelen and Danne~-
miller.13

It may be noted in connection with this €xample that the MIL-STD-105B
plans include matching double and multiple sampling plans. These offer
alternative possibilities for reliability and life testing applications.
If incoming lots are either quite good or quite bad (as is commonly the
case), substantial reductions in the number of items that must be tested
may be made. If items are expensive and if testing is destructive (as
it most likely will be in life testing), a reduction in average sample
size may be of importance., If the test period, t, is relatively long,

however, the elapsed time required for testing a second sample (or

1




subsequent ones in multiple sampling) when such samples are required to

reach a decision may raise difficulties.

Example (2)

For a second example consider the case of a manufacturer who
knows that his current production of a certain component has a mean
life of approximately 52,000 cycles., Furthermore, he has learned from
his past experience with life testing of these components that he can
assume a P value of 1/2. A life test period of 1000 cycles seems
Justifiable and facilities are available for testing a sample of 150
items from each lot. This manufacturer would like to know what accept-
ance criteria to apply so that virtually all lots will be passed as
long as the expected mean life of 52,000 cycles is maintained. He
would also like to know what consumer protection will be afforded. 4
final question is whether for this application changing to a proposed
test period of 300 cycles and a sample size of 500 items would yield
comparable or better quality assurance.

The first step toward answers to these questions is to compute
the (t/i) x 100 ratio at the mean life considered acceptable. This
ratio is (1000/52,000) x 100 or 1.93. Entering Table 2 with this
value gives (with rough interpolation) a value for p'! of 18% for a
B value of 1/2. Assuming a probability of acceptance of .95 is de-
sired for lots at the acceptable quality level of 52,000 cycles for
the lot mean, entering a table of the cumulative binomial distribution
indicates an acceptance number, ¢, of 35 items gives this probability

for a sample size of 150 items. This, then is the desired acceptance

criteria.




A simple measure of consumer's protection is to find the lot
mean value at which lots will likely be rejected. Suppose a probability
of rejection of .90 (of acceptance of ,10) seems to be a meaningful
figure. Reference again to a binomial table indicates that for n = 150
and ¢ = 35, the probability of rejection is +90 at a pt of approxi-
mately 28.4%. Entering Table 2 with this value gives a (t/p) x 100
ratio of approximately 5,7. Substituting a value of 1000 cycles for
t in this ratio and solving for u gives a lot mean of 17,500 cycles.
This figure for consumer's protection can be interpreted as follows--
since this quality (u = 17,500) corresponds to a P(A) = .10, under
this sampling plan (n = 150, ¢ = 35) on the average 90% of the lots
passed to the consumer will have a mean life of no less than 17,500
cycles. This may or may not represent adequate consumer protection,
If it does not, a plan with a larger sample size must be designed
and used.

An answer to the third Question may be found by making similar
computations for an n of 500 items and a value for t of 300 cycles.
In this case (t/u) x 100 equals (300/52,000) x 100 or .58. From Table 2
it is found that P' is approximately 10% at this truncation ratio,
Scanning a binomial table indicates an acceptance number of 62 will
give a probability of acceptance of ,95 or more when the sample size
is 500 items. With this sample size and acceptance number, the proba-

bility of rejection is :90 at a p! value of approximately 14%. With

- this value for P's a (t/u) x 100 value of approximately 1l.15 is found

from Table 1. Substituting 300 cycles for t in this ratio gives a
lot mean value of 26,100 cycles as compared to 17,500 cycles for the

first plan. Thus this combination of sample size and length of test
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period gives better discrimination between good and bad lots and the

consumer is therefore better Protected.

Example §32

In this example, reference will be made to a case for which the
component 22ife can best be characterized by a mixture of two Wei-

bul distributions. Kaollt

gives an example of thig for the life of
electron tubes. From the electron tube life experience, the wearout
failures, i.e., drift of electrical properties beyond some set limits,
invariably occur near the latter part of life. Hence the failures of
electron tubes are classified both as of the wearout type and as of the
non-wearout or catastrophic type, each type being represented by a sub-
population of the whole. In electronic terms, these failure types are
referred to as electrical rejects and inoperative rejects respectively.
The catastrophic (or inoperative rejects) sub-population is assumed

to start at time zero, i.e, the location parameter 7 = 0, when the
components are exposed to risks, The wearout (or electrical rejects)
Sub-population is assumed not to start until some delayed period has
elapsed, i.e., 7> > 0, since the limits set on the component drift
depend on many factors such as environmental stress, maintenance po-
licy, legal regulations, etc. Since, in general, failures due to weare
out and non-wearout reasons are identifiable, it is possible to treat
the two sub-populations Separately.

Suppose that for some application of electron tubes, the manu-
facturer's past exXperience indicates that the Weibull shape parameter
associated with the catastrophic sub-population, B, = 1/2 and that
associated with the wearout sub-population B2 = 3 1/3 are reasonable

values, and furthermore that electrical drift or wearout failure has
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never been experienced prior to 1000 hours of life ( 7 =0, 7, = 1000)
Suppose further that the manufacturer knows that approximately 2 1/2%
of the total tube failures are of the inoperative type and that the

mean life of his current production is,
# = (.025) (25,000) + (.975) (11,000) = 11,325 hrs

vwhere By = 25,000 is the mean life of the catastrophic sub=population
and Hy = 11,000 is that of the wearout sub~population. (See the ap=-
pendix of the paper by Kato:u'l for the derivation of this formula.)

A life test period of 500 hours for inoperatives and of 5000 hours
for electrical drifts are recommended and acceptance numbers ¢ = 2
and c, = 2 for each failure type are considered satisfactory. What
are the necessary sample sizes so that the pProducer's risk is no more
than 5%? Also, what would be the consumer's protection under this
Ssampling plan?

To answer these questions, the two sub-populations are treated se-
pParately and are denoteq by subscripts 1 and 2 as done before for the
inoperatives and electrical drifts respectively. For inoperatives,
(tl/ul) X 100 = (500 x 100) /25,000 = 2,0, Entering Table 2 with

this value gives a value for pi of 18.13% for a B8 value of 1/2. From

a binomial table with P(i) 2 .95 and P{ =18.13%, a value for n, =5

is obtained. The same binomial table for n, = 5, ey = 2 and

P(A) & .10 gives p] = 75%. Entering Table 2 with this value gives
(tl/ul) X 100 = 96,5 and Hy = (500 x 100) /96,5 = 518,2) hours, a
value which will be commented on later. For electrical drifts, )
must be subtracted from t2 and o giving new values for t2 and Ho
equal to 4,000 and 10,000 respectively., Hence, (tz/hQ) x 100 =
(4,000 x 100) /10,000 = 40.0 . Entering Table 2 with this value

18




gives for pé & figure of 3.25% for a B value of 3 1/3. From a
binomial table with P(A) = .95 and P} = 3.25%, it is found that
n, = 25, The same binomial table for n, = 25, 6, = 2, P(A) = .10
gives P} ~ 20%, Entering Table 1 with this value gives (tz/uz) X 100 =
71.04. Thus By = (4,000 x 100) /71.04 = 5,631 hours, which upon re=-
adding 7> gives 6,631 hours. Combining this value of corrected My
with Hy obtained for inoperatives gives tPe consumer!s protection
expressed in terms of a mean value equal to,

# = (.025) (518.2L) + (.975) (6,631) = 6,478 hours.
This means under the sampling plan of running a life test for inopera~
tives of n = 5 and ¢ = 2 for 500 hours and another life test for
electrical drifts of n = 25 and ¢ = 2 for 5000 hours, 90% of the
lots passed to consumers will have a mean life of at least 6,478 hours.,

To illustrate the danger of extrapolation in a mixed distribution

case, assume that the second test of 5000 hours duration was not run
at all, then the producer could only base his conclusion upon the
500-hour test and claim as consumers' protection, with $0% confi-
dence, a mean life of at least -518,24hours, a result which is

altogether too modest,
REIATIONSHIP BETWEEN ACCEPTABLE AND UNACCEPTABLE LOT QUALITY

Sampling plans are most conveniently cataloged, selected, or de-~
signed in terms of a producer!s risk and a consumer's risk. Some lot
quality figure will be specified as satisfactory and for lots of this
quality or better the probability of acceptance should be high, conven-
tionally .95 or more (the producer's risk of rejection small, .05 or less),

For these plans for life testing, this specification will be a lot mean
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life, B 95 at which P(a) 3 ,95, Likewise, an unsatisfactory quality level
will be specified for which the probability of acceptance will be low,
conventionally .10. This specification will be a lot mean life ) M09

at which P(A) s .10. (For other values of producer's and consumer!'s

risks reference may be made to a paper by Kao.15 )

In plan selection or design, one objective is to find a combination
of sample size and acceptance number which simultaneously yields the
desired values for both the consumer risk and the producer risk. If
working from tables of Plans, the values for lot quality at the two risk
figures may be listed. In the design of a plan, one may cut and try
until a suitable plan is found in a manner suggested in Example 2, Also,
factors are available which, in conjunction with the conversion tables
supplied here, enable a direct determination to be made.16

A simple alternative solution for the form of plan discussed here is .
to make use of one of its properties, namely that for a given acceptance
number, ¢, (and for a given value forg ) the ratio between the lot means
at the two risk values is approximately constant for all values of sample
size, n. These ratios (or multipliers) have been determined for values
for ¢ rangingfrom 0 to 15 for each of the various values forpB. They are
presented in Table 3. The table values are in the form of multipliers
for finding u.95 s given B 10 OF using the reciprocal of the multiplier,
for finding H 0> 8iven B gge That is, K, oo (for which P(4) = .95) is
equal (approximately) to ® 10 (for which P(4) = «10) times the appro-
priate table multiplier. These multipliers may be used both to assist
in evaluating the operating characteristics of some given plan and to
assist in the design of a plan to meet some acceptance-inspection re-

qQuirement.,
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Example (L)

For a certain purchased component the lot mean life should be
at least 4,000 hours; this value is accordingly chosen for E.10°
Also, the producer has been informed that lots whose mean life is
10,000 hours or more are reasonably sure of acceptance through the
sampling procedure. Accordingly, this value is to be used for u°95.
A value for B of 1 can be assumed. A testing period, t, of 200 hours
has been specified. Values for sample size, n, and acceptance number,
€, must be found to meet these requirements.

The ratio between the two lot means,u.95/u’lo sis 10,000/1l;,000 or
2.5 . Examination of the table of mean life multipliers, Table 3,
under the column forpg = 1 indicates that an acceptance number, c,
of 10 items wiil give this ratio. The (t/u) x 100 ratio at ®.10
is (200/L4,000) x 100 or 5. Entering Table 2, the table of p!, with
this truncation ratio value of S, gives a p' of L4.86%. Reference
to a table of the cumulative binomial distribution or use of the
Poisson approximation for ¢ = 10 and p' = 0488 at P(A) = ,10 shows
that a sample size, n, of 315 items meets the requirements., A check
for this solution can be made, if desired. For n = 315, ¢ = 10, and

T P(A) = .95 the Poisson approximation indicates a p! of 1.96%. Entering

Table 1, the table for per cent truncation, with this value for p',
a value for (t/u) x 100 of approximately 2.0 is found. Solving for
kg5 yields (200/pn) x 100 = 2.0 or M g5 = 10,000 which is the desired

value,

TABLES OF SAMPLING PLANS

4 set of tables of sampling inspection plans has been prepared, one

table for each of the nine values for g for which the relationship
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between p! and (t/u) x 100 has been established. These are presented

as Tables La through Li.

Each table lists values for the acceptance number, ¢, and for the
minimum sample size, n, for a variety of objective t/u ratios. The
plans are designed so that if 100 times the ratio between the test time,
t, and the mean life value for the lot, u, or (t/u) x 100 is equal to or
greater than the selected column value in the table, the probability of
acceptance, P(A), will be +10 or less. Stated otherwise, the plans
assure with 90% confidence Oor more the acceptance of lots for which the
(t/u) x 100 ratio is equal to or less than the selected column or objec=
tive value. The ratios in the column headings (for which the plans have
been designed) may thus be considered in the same way as 1c* tolerance
per cent defective (LTPD) values are in describing operating characteris-
tics of the widely used attribute and variables acceptance plans.

It has been assumed that in acceptance inspection for reliability
the consumer'!s rigk will be of pPrimary concern. For this reason, these

plans have been cataloged by P(A) = .10 ratios which measure consumer

protection. However, in addition for each plan the (t/m) x 100 ratio
is given for which the probability of acceptance is .95 or more. Each
such P(4) = .95 ratio value is shown in Parentheses under the corresponding
Sample size number. These ratio values may be considered similar to
acceptable quality level (4QL) values in indicating the producer's risk,
If the mean life for the items in the lot is such that the t/u ratio is
equal to or less than the tabulated value, there is assurance with con-
fidence of 95% or more that the lot will be accepted.

The two ratio values, one in the column heading and the other in

parentheses below the sample size number, broadly describe the operating
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characteristics of each plan and so form a basis for making an appro-
priate choice for any acceptance inspection application. These values
may also be used to determine approximately the operating characteristics
of any acceptance plan that has been specified or that is in use and
for whicih n and ¢ match closely one of the table plans. It is easy to
convert these ratios to hours, cycles or some other measure of lifelength
to fit the product and test specifications iﬁvolved. This will be illus=
trated by two examples which follow later,

In the preparation of these plans, binomial tables prepared by

Grubbsi!

were employed for values for c up to 9 and for n up to 150.
For higher values of ¢ and for values for n up to 60 or so, the Pearson
tables of the incomplete beta-function were used.18 Higher values of n
were determined by the Poisson approximation, using a table of npt
values prepared by Cameron.16 The Poisson match was checked and was
found close, even for the smaller sample sizes and large values for ple
The slight differences that may exist in some cases is on the conserva-
tive side; the value for n is slightly larger than that theoretically
required. As this is primarily an exploratory study, plans showing
extremely large sample sizes have been included to indicate the order

of magnitude involved and not with the expectation that samples of this

8ize would ordinarily be used.

Example (5)

An acceptance inspection plan is required which will assure
each lot accepteds Also, it will be desirable to assure the pro=-
ducer that if the mean life for items in a lot is 25,000 hours or

more, there will be a high probability (.95) of its acceptance,.
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A test period of 40O hours for the inspection of sample items has
been specified, Through past experience it has been determined that
the distribution of item life is of the Weibull form with g equal
to approximately 1/2,

For these sampling plan specifications 100 times the ratio of test
time, t, to mean life, # 102 is (LOO/L,000) x 100 or 10 for which a
probability of acceptance of .10 or less is desired. At the .95
probability value the ratio is (Loo/25,000) x 160 or l.6. A plan
approximating this may be found in Table Lo which gives plans for
distributions for which B = 1/2. The column for which (t/u) x 100 = 10
is entered and scanned for the ratio value 1.6 among the values listed
in parentheses. This value is found well down in the column. The
corresponding sampling inspection plan specifies a sample size, n, of

L3 and an acceptance number, ¢, of 11,

Example (6)

A sampling inspection plan specifies that a random sample of
3000 items be drawn from the lot and tested for a period of 1,80
hours. If no more than 7 items fail before the end of the test
period, the lot is to be accepted; if more than 7 items do not live
through the test period, the lot is to be rejected. Life measure~
ments for past inspection and research for the product to which the
Plan is to be applied indicate the distribution is of the Weibull form
with B equal to approximately 1 2/3. The pProspective user of this plan
would like to know what quality protection will be given. Inspection
of Table hd which lists plans for p = 1 2/3 discloses a plan matche-
ing reasonably well the one specified, the plan for which c, the

acceptance number, is 7 and n, the sample size, is 3,019, For this
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table plan the (t/u) x 100 ratio at P(A) = .10 is 4. Substitution of
the specified test period length of L80 hours for t gives (L80/u) x
100 = 4. Solving for u gives 12,000 hours as the mean value for item
life for the lot for which the probability of acceptance is .10 or
less. A similar substitution for t using the ratio at which P(A) =
95 gives (L480/u) x 100 = 2.I1. Solving for u again gives 23,000
hours as a lot mean value for which the probability of acceptance is
+95 or better. The values for the lot mean at these two probability
values broadly, but very practically, describe the operating charac-

teristics of the specified plan.

In the use of these tables of plans, several points of practice
should be noted. First, in using the p' values associated with values
for (t/u) x100 for the Weibull distribution to find values for ¢ and n,
the binomial probability distribution has been used. Hence the size of the
lot should be relatively large compared to the size of the sample for
the staﬁed probability values to precisely apply.' Second, if a plan is not
available for which a (t/u) x 100 ratio in the column headings matches
closely the desired ratio, to be conservative, a plan should be chosen
from the column with the next smaller ratio heading. This will assure
with confidence greater than 90% the specified mean life for acceptance.
If the acceptable quality level (the ratio or mean life for which P{A)=,95)
must also be guaranteed and a matching ratio value is not found in the
selected column of plans, a plan with the next greater value should be
selected. Lots equal to or better than the specified "acceptable quality*
will have an assurance of greater than 95% of being accepted. With
proper care, some rough interpolation may be employed between listed

sample sizes (either down or across the table or both) to find a new
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Plan having more nearly the desired characteristics. Finally, if a
Plan is found for which the desired and given ratios closely match but
for practical reasons it seems desirable to round off the sample size to
the nearest number ending in zero or five, such rounding off should be
done to the next larger Qize. This will assure retention of the proba-

bility values of .10 or less for the ratios given in the column headings.
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TABLE 1

Table of Values for Per cent Truncation, (t/u) x 100
p! Shape Parameter - p
(in %) 1/3 1/2 1 12/3 2 21/2 31/3 L 5
.010 «010 45 1.13 2.83 7.03  11.03 17.26
.012 012 ) 1.2, 3.0 7.42  11.55 17.91
.015 .015 W57 1.38 3.32 7.94 12,21 18,72
020 »020 67 1.59 3.73 8.66 13.12 19,83 !
.025 025 « 77 1.78 L.08 9.26  13.87 20.74
«030 «030 «86 1.95 L.Lo 9.77  1k.52 21.50
040 +0LO 1.02 2.26 L.93 10.65 15.40 22.77
«050 050 1.18 2.53 5.39  11.40 16.49 23.82
065 065 1.37 2.88 5.98 12.32 17.42 25.10
080 080 1.56 3.19 6.50 13.13 18.56 26.156
«100 «10 1.78 3.57 7.11  14.03 19.82 27.36
12 W12 1.98 3.92 7.65 14.82 20.53 28.37
.15 .15 2,26 Le37 8.36 15.8) 21,71 29.67
«20 «20 2.69 5.07 9.39 17.2 23.33  31.43
.25 .25 3.08 5.64 10.27 18.47 24.48 32.87
<30 «30 3.4 6.18 11.05 19.51 25,83 34.09
L0 L0 L.oT 7.14  12.39 21.27 27.76  36.12
+50 -001 +50 k.57 7.99 13.5% 22.75 29.36 37.76
55 <002 .65 S.6 2.12 15.06 2h.62 331,35 39.81
.80 .003 .80 6.19  10.11 16,36 26.21 33.03 L1.50
1.00 .005 1.01 7.08  11.31 17.90 28.03  34.93 L3.40
p +007 1.21 790  12.40 19.26 29.62 36.57 L5.02
1.5 +011 1.51 .07 13.87 21.08 31,68 38.68 47.09
2.0 020 2.02 10.77  16.03  23.67 3L.56 k.59  4L9.90
| 2.5 092 253 1233 17.95  25.90 36.98 Ly.or  couag
3.0 «0L7 3.08 13.78  19.69 27.89 39.09  L46.09 5,17
La0 001 .083 L.o8 16.42  22.79 31.3% Lk2.69 L49.59 57.45
E.D « 002 «13 5.13 18.84 25.58 3Lk.35 L4s5.71 52.50 60.13
6.5 .005 .23 6.72 22,15 29,25 3B.28 L9.57 56.18 63.46
B.0 .010 .35 B.3L 25.20  32.59 l1.72 52.88 59.29 66.26
10.0 «020 .56 10.5) 29.01  36.63 L5.82 56.73  62.85 69.44
12 034 .82 12.78 32.58  L0.34 49.50 60.11 65.96 72.18
15 «070 1.32 16.25 37.63  US.48  SL.L9 64.60 70.05 75.73
20 .18 2,49 22.31 L5.51 53,30 61.85 71.0k  75.83 80.68
25 «L40 L.14 28.77 52.99  60.53 68.47 76.67 80.80 B84.89
30 o TH 6.36 35.37 60.29 67.39 7L.62 81.79 85.26 88.62
Lo 2.22 13.04 51.08 7479  80.6L4 86.15 91.09  93.27 95,22
50 5.55 2h.02 69.31 89.82  93.95 97.33 99.82 100.67 101.21
65 19.28 55.10 104.98 115.23 115.61 11).92 113.06 111.68 109.98
8o 69.L8  129.52  160.9) 148.91 143.1) 136.3) 128.53 124.27 119.79




Table of Probability Values

TABLE 2

at Truncation Point, pt (%)

|

Shape Parameter - g

6.5

t/w) x 100
V3  1/2 1 12/3 2 212 31/3 L
«010 8.09 1.40 «010
«012 8.57 l.54 «012
«015 9.20 1l.72 015
«0201 10.08 1.98 «020
<025 10.82 2.21 «025
«030 11.45 2.42 «030
«0L0 12.53 2.79 040
«050 13.43 3.11 «050
<065 | 14.56 3,5) +065
-080| 15.52 3,92 .080
<100 ] 16.61 4e37 «10
«12 | 17.56 4,78 .12
«15 118,78 5,33 .15
«20 | 20.46 6,13 «20
25 21.86 6.83 25
«30 23,06 7.45 «30
L0 | 25,06 8.56 L0
«50 26.71 9.52 «50
+65 | 28,76 10.78 65
.80 | 30.47 11.88 .80
1.00 32.40 13.19 1.00
1.2 34.03 14.35 1l.19
1.5 36.12 15.90 1l.49
2.0 38.94 18.13 1.98
2.5 .22 20.04 2.47
3.0 | L3.14 21,73 «96
b.O h6.28 2b06h [ 2
5.0 | 48.80 27.11 8
9
9

50.90




TABIE 3

Table of Mean Life Multipliers
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TABLE La
Table of Sampling Plans for B = 1/3

n

(t/u) x 100 Ratio for which P(A) = .10 (or Less)

* 200 50| 25| 10| s 2.85] 1 0.5 | 0.25[ 0.1 | 0.05/0.025]0.020

0 1 2 2 3 N 5 6 13 | 16 21| 28

1 3 L kL 6 7 6| 11 22 | 28| 35| L7
(.08)|(.02) |(.01)

2 5 5 é B 9 12 15 i 38 L8 65
(+15) [(+26) ((.08) [(.03)|(.02) |(.01)

3 6 7 8 | 10| 212 15 | 19 39 | LB 60| B/
(+53) [(+27) [(+17) |(.07) | (.0L) | (.02) (.01)

I 7 8| 10| 12| 18 18 | 23 L6 | =8 72 | 97
(1.2) (+66) |(+33) | (.14) | (.06) [(.03) (.01)

5 9 10 1n i 17 21 27 5k 67 8L | 113
(1.3)|(+80) | (+54)|(+20) | (.10) [(.08) (.02)

6] 10 1| 13| 16| 19 | 24 ) 61 | 76| 95 | 128
(2.2) | (142) | (+65) | (.28) [(.15) | (.07) (.03) -

7] 11| 13| 15| 18| 22 26 | 3y 69 | 86! 107 | 13

8 13 1 16 20 2 29 38 76 5 | 118 | 18
(2.9) [ (2.7) [ (12) [(LL) [(.23) [(wa2) (.05)

9| 14| 16 | 18 22 | 27| 32| I 83 | 103 | 129 | 176
(3.8)((2.1) [ (1.2) [(.52) [(.2L) |(.13) (+06)|(.03)|(.01)|(.01)

10 15 17 20 2y 29 35 LS 3 | 115 | 143 | 151
(4e6)](2.5)|(2.2) [ (.58) |(.28) [(.1L) («06) (.01) '

L 16| 19| 21 26| 3| 38| L8 100 | 124 | 154 | 206
(540)| (248) | (1.7) | (+68) [(+3L)|(.16) (.07) (.01)

12 18 20 23 28 k1N 1| s2 108 | 133 | 16
(5:5)| (3.1)[ (1.7)| (.72) | (.30) (.28 | (.00 (:01) 5| 20

13| 19 2| 24 | 30| 36| 43| s6 15 | W2 | 176 | 235
(6.2)(3.6) (1.9)|(.76) («40)|(.18){(.07) (.01)

1l 20 23 26 32 38 L6 | éo 122 | 150 | 187 | 249
(647)1(3.9)| (2.1) | (+85) | (.1S5) | (.22) (.09) (.01)|

15| 22 24 | 28| 34, | O | L9 | &3 129 | 159 | 197 | 264
(7.0)| (Le2) | (2.2) | (+95)|(.LS5) («22)((.09) (.01)

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)




TABLE Lb

Table of Sampling Plans for B = 1/2

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

100 50 | 25 10 5 2.5 | 1 0.5 | 0.25| 0.1 | 0.05 0.025| 0,01

0 2 3 L 6 8 11 17 23 33 52 73| 103 | 165
(.03)|(.02) [ (.01)

1 L s 7 10 13 18 28 Lo 56 88 | 124 | 177 | 278
(.52)(.32)[(.16)| (.07 | (.0L) |(.02)| (.0L)

2 S 7 9 13 18 25 39 ss 77 | 120 | 172 | 241 | 381
(202) [ (e9L) | (o5L)| (o2L) | (+12) | (.05) (-02)i(-01) (.01)

3, 1 9 112 1 17 | 23 | 32| L9 | 69 96 | 153 | 215 | 303 | 478
(3.3)1(2.7) | (+85) | (+40) | (+21) | (+10)|(.0L)|(.02)|(.OL)
L 9 11 | 14 | 20 | 28 |, 381 59 | 82 115 | 183 | 258 | 362 | 571

(Le1)[(2.5) [(1eL4) [ (.60) | (.30) (+15)((.06) | (.03) | (+02)(.01)

51 A0 13 16 | 2k | 32 | LS 68 | 96 | 13 | 213 | 299 | 420 | 663
(6.4)[(3.3) (1-224(.75) (+40) | (-19) | (.08) | (.0L)|(.02)|(.01)

6| 12 14| 19| 27| 3 f 51 78 109 | 155 | 242 | 339 | 477 | 753
(7.2)| (LeT) [ (2.2) (o9L) | (k6) (. +2L)|(+10) [ (.05) | (.02) (.01)

7| 13| 16| 21 30| L1 | S7 | 87 | 122 173 | 270 379 | 533 | 8l
(97)/(5+3)(246) | (141) | (o55) | (e 28)}( ¢11) [ (+06) | (+03)((.01)| (.01)

8| 1 | 18 | 23 | 34 | U6 63 s 96 134 | 191 | 298 | L18 | 589 | 929

(12) | (6. 0)|(3.2) (1.2)( (+07)|(.03)|(.01)| (.01)

9| 16| 20| 26| 37| 5o | 69 | 105 W7 | 208 | 326 | Ls7 | 643 |1,005

(12) [ (6L)[(3.3)|(1eL)[(-73) (. +36) | (+1L)(.08) (. Ob)[(-ol) (.01)

10 17 22 28 Lo Sk | 77 | 118 | 162 | 226 | 353 | L96 | 698 | 1,101
(15) [ (6.8) (3.7) (1.5) | (+78) | (.38)(+15)|(.08)|(.0L)| (.02)|(.01)
e el S e,

i1 19 23 30| 3 s8 | 83 | 126 175 | 21 | 380 53k | 752 | 1,186
(16) | (8.0) | (Le1)| (1. 6)|( 83) [(.40) | (+16) |(.08) | (.0k)|(-02)|(-01)
12/ 20 25| 32| 47| 6 | 8 | 135 | 187 | 261 407 | 572 | 805 |1,271
13 22 | 27 34 50 70 95 | 1Lk | 200 | 278 | L3k | 610 858 | 1,355
(18) 1 (940)1(5.0)|(1.9)|(.90) [(.LL)|(.19) (+09)! (.05) (.02)|(.01)
iV 23| 29 37 53 75 1101 | 153 | 212 | 295 | L61 | 648 | 911 1,438
(19) (9 2) (5.0) | (2+0)|(+92) [(o47)|(.20) (+10)|(.05) | (.02)[(01) (.O1)
15| 25 391 561 79 | 107 | 162 | 22l | 312 | 488 | 685 | 96k | 1,521
(19) (9-h) (500)| (2.2) | (+98) [ (.49) | (+21){(+11)] (05)| (.02)|(.01) (.01)

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)




TABLE Lc

Table of Sampling Plans for f = 1

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

50 25! 10 s 2.5 1 0.5 | 0.25 0.025| 0.01
o] 5 10 2L W6 92| 231 L61| 922 9,212|230-2
(1.0)(+51)](+20) {(+11) | (.06) (.02) | (.01)
1 9 17 Lo 79| 158| 389 778(|1,556 156-2| 389-2
(Le2) [(241) (+90) [(o45) | (+22) | (.09) | (.05) | (.02)
2 12 23] 55| 108| 216 533[1,065 2,129 213-2|532=2
(7:L)[(347) {(1.5) [(+76) | (.38) | (.15) | (.08) [ (.0L)
3] 15 291 69| 135| 271 669|1,337|2,673 267=2|668=2
(10) |(5.0)[(2.0) |(1.0) |(.50)|(+20)|(.10)|(.08)
L 19 34 82| 164| 324 800(1,600|3,200 320-2|800=-2
(12) [(6.2)[(2.4)1(1.2) [(+61)|(e2h){(-22) |(.06)
5 22 Lo 96| 191| 376| 928/1,855(3,710 371-2/928-2
(13) |(7.0)}(2.8) (1.L)[(.69)](.28)](.1L)|(.07) (.01)
6 25 L6} 109| 216| L27(1,054(2,107 4,213 421-2|105-3
(15) 1(7.5)}(3.0) [(1.5) [(+77)[(+31)|(.26)](.08) (.01)
7 28 51| 122, 242| L477/1,178/2,355 L, 709 471-2/118-3
(16) 1(8.2)[(3.3)((1.7)|(+83)|(+34){(+27)|(.08) (.01)
8 31 57 135| 267| 527|1,300{2,600|5,200 520-2{130-3
(17) [(9.0)|(3.5)|(1.8)[(+89)(+36)(+18)]|(.09) (.01)
9 3L 62| 17| 292| 576(1,421|2,8)2 5,683 568-2|1)2-3
(18) [(943)[(3:7)[(1.9) [(+9L) | (+38)|(-19)|(.10) (.01)
10 37 70 162 316| 624)1,541(3,082/6,163 616-2154-3
(19) [(9.5)[(3.9)|(2.0) |(1.0) | (.LO) (.20)}(.10) (.01)
11 Lo 76| 175 3k1| 672|1,660|3,320|6,6L0 6614=2|166-3
(20) [(9+8)|(4e0){(241) |(1.1)| (oh2)]| (+21)](.10) (.01)
12 L3 81 187 365| 720/1,780|3,557 7,113 711~2(178=3
(20) [(10) |(Le2){(2.2) [(1.1)|(ok3)|(.22)](.11) (.01)
13 LS 86/ 200/ 389 768|1,896|3,792|7,58L 758-2(190-3
(21) [(10) |(Le3)|(2.2) [(1.1)](.48)| (+22)|(.11) (.01)
b1 L8 91| 212, 13| 815|2,013|L4,026|8,052 805-2|201-3
(22) [(11) [(hel)[(2.3) [(1eL) | (o46) (+23)((.12) (.01)
15 51| 97| 224 L37| 863(2,130|L,260|8,517 852-2|213-3
(22) [(11) [(Le6)|(2.L)](202)| (LT)] (o2L)[(.12) (.01)

add; for example, 15L4-3 = 15),000.

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)
The figure following the dash in sample size numbers shows the number of gzeros to




TABLE Ld

Table of Sampling Plans forpf = 1 2/3

(t/u) x 100 Ratio for which P(A) = ,10 (or less)

[+]
100 50 25 15 10 8 2.5 1.5 1| 0.5| 0.25)
0 3 9| 28| 66| 129 189 1,280 3,031 (6,061 |18)=~2 |576=2
(948) [(5.0) [(2.5) [(2+5) [(1.0)|(+80) (25) [(«15) [(+20) | (+05) | («03)
1 6 16 L8| 112| 220! 319 2,162 (5,119 (102-2 | 311-2 | 973-2
(22)l (12) [(5+9) [(3+5) [(2.3)](1.9) (+60) [(+35) [(+23) |(+11) [ (+06)
2 8 22 66| 155 301 )37 2,957 17,003 | 140-2 [426-2|133-3
(31) | (16) |(8e1) [(L.B) (3.2)| (2.6) («81) [ (oL9) [(+32) |(+16)|(.08)
3 10| 28| 83 194| 378/ su8 3,712 (8,791 |176~2 [534=2|167-3
(38) | (19) [(9.6) (5'7).(3'8) (3.1) (+96) [(+58) [(38) [(+19) | (.09)
LI 12| 33! 100| 232| L52| 656 L,Ll2 [105-2 [210~2 |640-2 | 200-3
(L2) | (21) | (11) [(6ek) [(Le3)|(34L) (161) [ (+65) |(eL2) | (s21) | (+20)
s b 39| 16| 26| 525 761 5,153 (122-2 | 2L4~2 | 742-2| 232~3
(46) | (23) | (12) [(6.9)|(Le6)|(3.7) (2+2) |(+69) | (oU5) [(e23)] (o12)
6 17 L | 132 306| 596/ 86k 5,852 (139-2 [277-2 |8L43-2|263-3
(47) | (25) | (12) [(7eL) [(Le9)|(349) (163) [(«75) [ (+L4B)|(+25) | (+22)
71 19 L9 | 48| 342! 666 965 6,540 |155-2 | 310-2 |94 2-2]| 29} =3
(50) | (26) | (13) [(7+7) [(542)| (ke2) (13) [(+78) | (+52) |(+26)((+13)
8 21 sL| 165 377| 1735|1,066 7,2201171-2|342=2 |104~3|325-3
(52) | (27) | (13) [(841) |(54L) ]| (Le3) (1.4) [(<80) | (+53) | (+27)| (413)
9 23 59! 181| 412 803|1,165 7,893 187-2| 374=2 [114~3| 355-3
(54) | (28) | (1b) [(843) |(546)!(Le5) (1ek) [(e8U) | (+55) [(+28) | (o1L)
10 2L 68| 196| 47| 871/1,263 8,560 203-2/405-2 |123-3| 385-3
(57) | (28) | (1L) | (8+6)[(5.7)(Le6) (2e5) [(+86) ] (57) [(e29)| (o1k)
1 26 73| 211 482! 938(1,361 9,222 218-2 | 437-2[133-3|415-3
(59) | (29) | (15)|(8+9) [(5.9)] (LeT) (25) | (+89) | (.58) [(.30)| («15)
12 28 78| 226, 516(1,005] 1,458 9,879 234-2|468-2 |142-3| 41;5-3
(60) | (29)| (15)|(9+0)((6+0)| (L+8) (2e5) | (+90) | («59) | (+30)]| (+15)
13 30 83| 21| 550{1,072|1,554 105-2 | 2492 | 4992 |152-3| 475-3
(61) | (29)| (15)[(941)[(641)| (Le9) (146) |(+92) | (461) [ (31)| (15)
ST 33 88| 256 584{1,138|1,650 112-2 |265-2|530-2|161-3| 505-3
(61) | (30)| (15)(9.3)|(6+3)| (5.0)|( 2.6) | («9h4) | (+62) [(o31)] (16)
15f 35 93| 270/ 618/1,203/1,746 118-2|280-2|560~2|170-3| 535=3
(62) | (30)| (16)| (9+L)| (6.L)| (5.1) (16) [ (+95) | («63)](+32)] (+26)

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size numbers shows the mmber of zeros
to add; for example, 218-2 = 21,800,




TABLE le
Table of Sampling Plans for Bw2

n

(t/1) x 100 Ratio for which P(A) = ,10 (or less)
12000 50| 25| 15] 12 w8l 5[ 1 25 ng 2 0.5

i3] 12 L7 131| 206 296 L1 11,152 11,772|)4,700(128-2 288-2 (115-3
(15)[7.L) [(3.7) [(2.2) (1.8)[ (1.5) |(1.2) (+76) ((+62)] (+38) (+23) [ (+16) [(.08)

1 6 2a Bof 223| 348 L99| 778 1,945 |2,993(7,939 | 216~2|1,86-2 194=3
g29) (15) [(7.5) |(4.5) |(3.6) (3+0) [(2.4) [ (2.5) [(1.2) (+76) [(46) | (+30) |(.15)

. 8l 291 m0{ 305| u76 683 11,062,661 (4,09)| 109-2 296=2|665-2 [266-3
1 {38)1(29) [(948) [(5.8) (4e7)}(3.9) |(3.1) | (2.0) (166)] (+98) | (.60) | (.1s0) (.20)

11/ 361 138| 382| 597/ 857 1,336|3,341 5,140|136-2(371-2 835-2 |33)=3
(43)] (22) | (11) (6-7)l(5.h) (Le5)|(3.6) [ (2.3) [(1.8) (1.1) | (+70) | (WL7) (.24)

13, 43| 167| 457! 714 1,02511,599 3,977 |6,150|163-2 | -2 999-2 400-3
(48) | (24) | (12) [(7.L) (5.9)[(5.0) | (4.0) | (2.5) (2.0)[(1.2) (-76)5(-51) (.26)

15/ 50| sy 530! 829/1,190(1,855]),638 751351189-2 515-2 1163 L6L4=3
(52), (26) | (13) (729) (6.3)(5.3) | (§.2)| (3.7) |(.33| (135 (+82) (.54 |(.28) |

6, 171 s7| 220 602] 91 1,351 12,106|5,21L (8,102| 215-2 (5852 |132-3 |5 27-3
(55)] (28) | (14) [(843) [(6.6) (5+6) | (Le5)] (2.8) [(2.3) (2.4) (-85);(-57) (.29)

19 64| 2u5| 673 (1,051 1,51012,35)15,886 |9,055 | 2,0-2 65&-2i1h7-31589-3
(58)| (29) | (1L) [(8.7) (6.9)| (548) [ (L+6) (2.9) {(2.4) ] (2.5) (+88)|(+60) |(+30)

Al 71 272| 7431,161 1,667 2,600 6,498 {9,997 | 265-2 122-2162-3 |650~3
(60)| (30) | (15) [(9.0) [(7.2) (6+0) [(L+8)] (3.0) [(2.L) (1.5) [(+91) | (.62) (e312)

91,23 17| 297| 8121,27)1,822|2,8)1|7,103 |109-2 290-2|789~21178-3 [710-3
(62)[ (30)| (25) {(9+2) [(7.L) (61) [(he9)]| (3.1) |(2.5) (15) [(o9L) | («63) |(32)

10 26| 87| 322 881(1,376 1,976|3,081|7,704 |119-2 31L-2856~21193-3 |770-3
(62)| (31) | (15) [(9.k) [(7-5)](6.3) | (5.0) (3.2) |(246) [ (1.6) | (96)| (+65) |(.33)

28/ 9L 347! 9su9 1,482/2,1283,320| 8,299 |128-2 339-2 |922-2 {20763 |830-3
(63)! (31) | (26) |(9.6) (7.7)] (6.4) [(5.1)] (3.3) (2.6) 1 (1.6) {(9.8) | (.66) (o3L4)

30 1001 372 11,017 1,588 2,280 3,556/ 8,891 |137-2 363-2 [988-2|222-3 |889-3
(6L)](32) | (16) ((9.8) (7.8) (6.5) [(5.2)] (3.3) (247) (146) |(2.0) | (+67) (e3k)

381 20T | 396 11,08k 11,6931 2,131(3,792 9,479 [146-2 |367-2 12053 237-3 lgyg-3
(65)[(32) | (16) ((10) {(8.0)| (6.6) (5¢3)[ (3ek) {(2.7) (1e7) (2.0) [(.68) (+35)

Wi 3W 1131 k21 1,151(1,798) 2,561 1, 026| 101-2 155-2 411~2 |112-3 | 252-3 |102 ),
(66)((33) | (17) | (20) (8¢1)] (647) | (5a)| (3ok) (248) [ (147) [(1.0) [(-69) (+35)

11

12

13

36| 1201 ks 1,217 1,902 25730 L,258) 106-2 |16)~2 |;35-2 1183 266-3 106~
(67)[(33) | (A7) | (20) [(8.2)] (6.8) (5¢5)] (3.5) [(2.8) [ (327) | (1.0) (+70) |(+36)

-l

(t/u) x 100 ratios in parentheses are for P(A) = .95 (or more)

15

The figure following the dash in Sample size numbers shows the number of zeros
to add; for example, 118-3 = 118,000,




TABLE 4f
Table of Sampling Plans for B =21/2

n

(t/u) x 100 Ratio for which P(A) = .10 (or less)

0] 50| uo| 25 15 2] 1] 8 65| 5[ 4 2.5 15

0 L 20 31/ 100/ 360 623|1,002 1,77212,87915,618(9,596( 320~2 115-3
(20) | (10) [(8.7) | (5.4) ] (3.3) (2.6)/(242)| (17) | (1k) (1e1)|(+88) | (455) (33)

6/ 3l 53| 170, 608 1,052/1,692| 2,993 1,863 9,488|162-2(5),0-2 194-3
(37)(18) | (15)1(9.6) (5.7) (h.6)1(3-8) (3+0) [(2.5) | (1.9) (1.5) [(+96) | (+58)

9 L6 721 233] 832 1,439|2,31 4,094 16,653]130-2] 2222 739-2| 2663
(L5)((23)| (19)| (12) (7.0)|(5.6) (Le7)((3.7) | (3.1) (2.3)[(1.9)|(1.2) (.72)

3. 11, 58 91| 292 1,ouh|1,806 2,90515,140/8,352163~2|278-2 928-2 | 3343
(51)[(25)| (21)| (13) (7.8)| (6.3)|(5.2) (5.2) (3.4) [(2.6) [ (2.1) | (1.3) (.80)

53| 10| 109| 350/1,250| 2,161 3,476!6,150] 9,993 195-2/333-2|111-3| 400-3
(56)[(27)| (23)| (1L)|(8.5), (6.8)(%.6) (b.5) [ (3.7) | (2.8)[ (2.3) | (1.1 | (.86)

5/ 16/ 81/ 127| ko6 1,450 2,507/4,033)7,135 | 116-2 | 2262 386-2/129-3 463

4

i(58) (29)] (2u)| (15)|(9.0) (7-2)'(6-0) (Le7) | (3.9) (340)| (2e4) [ (1.5)| (.92)
6 18 92/ M| 460|1,646 2,8&7!&,580 8,102’132-2 257-2/1439~2| 146-3| 527-3
’(61) (30)| (25)| (16)|(9.L) (7-5)|(6-2) (Le9) | (Le2) | (3.1) | (2.5) (146) [ (o94)

7| 20/ 103| 163| 515 1,840 3,182/5,118/ 9,055 | 1472 | 2872 L490-2/163-3|589-3
(6L) (31)| (25) | (16) (9.7 (7.7) (6.h).(5.1)!(h.2) (3e2)((2.6) | (1+6) (.97)
&3l 35| (LBo| 5682,031)3,513/5,650|9,997 | 162-2| 317-2 | 541-2 | 150 650~3
(66) (32)| (26)| (17) (10) (8-0)|(6-6)[(5-2) (Le3)](3e3)](247)( (1.6) (1.0)

5 1a24| 197| 621|2,220 3,8U0| 6,177/109-2 | 178-2 | 3462 (592-2 197-3|710-3

(67) (32)| (27)| (17) (10)| (841)| (647)] (54.3) (Leli) | (3e4) [(2.7)] (1a7) (1.0)

i | gy 1311 21k 6732,408/L,16l6,699| 119-2|193-2| 3762 6L2-2| 214-3| 770-3
(68) (33)| (27) | (17)| (10)|(8.3)| (6.8 (5.4) (4.5) | (3.4) | (2.8) | (1.7)]| (1.0)

29| 1h8| 230| 725|2,59) 4,486] 7,217 128-2| 207-2 405-2 | 692-2| 231-3| 830-3
(28) | (18)| (11)((8.L) (7.0)| (5.5) | (Le6) | (3.5) (2.8)|(1.7)| (11)

3L 1581 2L | 77712,779|4,806| 7,732| 137-2| 2222 U3L~-2 | 741-2 2473 889-3
(28) | (18)| (11)|(8.6) (7.1)| (5.6) (k.6) (3.5) [ (2¢9)[(1.8)] (2.1)

263 | 828/2,963|5,12 8,243| 146-2 237-2| j62-2 790~2| 263-3| 94,8-3
(29) | (28)| (11) (8.7)!(7.1) (5¢7)| (Le?)| (3.6) | (2.9) (1.8)|(1.1)

279 | 879/3,145 S,hh0|8,752 155-2|252-2|491-2 839-2!280-3 101-Y
(29) (18)| (11)((8.8)|(7.2) (5.8) | (Le7)|(3.6) [(2.9) |(1.8) (1.1)

295 | 930/3,3275,755) 9,258 16112 | 266-2 5152 | 8672 |29 106,
(29) | (19)| t12) (8:8) (7:3)| (5:8) | (1.8)| (3.7)| (3.0) | (1.8)| (22

(t/1) x 100 ratios in Parentheses are for P(A) = .95 (or more)

The figure following the dash in sample size numbers_shows the number of
zéros to add; for example, 2963 = 296,000,




TABLE Lg

Table of Sampling Plans for g = 3 1/3

n

(t/1) x 100 Ratio for which P(A) = .10 (or less)

100 65

50

Lo

30

25

20,

15

12

10 8

6.5

I
(21)

L
(30)
2y
(32)

9| 33
(56) | (37)
3l 12 L2
(60) (LO)

7
(L6)

1 51
(65) | (L2)
16

b 59
i [€68) | (LbL)

34
(16)

S7
(24)

78
(28)

98
(31)
117
(33)

136
(34)

70
(13)

19
(19)

164
(23)
206
(25)
246
(26)

286
(27)

183
(9.6)

309
(1k)

423
(17)

531
(19)

635
(20)

737
(21)

334
(8.0)

S6L
(12)

772
(1L)
969
(15)
1,159
(16)

1,345
(a7)

698
(644) |

1,179 |2

1,772
(L.8)

2993

(9.8) | (7.k)

1613l

) [

2,025 5
(12)

2,423 6
(13)
2,811(7
(14)

094

(8.7)

»1L0

(9.4)

,150
(10)

2135
(20)

3,839
(3.8)

6,48L
(5.8)
8,870
(648)
111-2
(7.5)
133=2
(7.9)

155-2
(8+2)

149-2
(2.5)

251-2
(3.9)

343-2
(Le5)

L31-2
(L4.9)

2L2-2 | 516-2
(6-6)|(5-2)

281-2 598=2

6,979
(3.2)
118=2
(Le8)
161-2
(5.7)
202=2
(6.2)

288-2
(2.1)
LB6-2
(3.2)
665-2
(3.7)
835-2
(4.0)
999~2
(4e3)
116-3
(L.b)

698-2
(1.6)
118-3
(2.4)
161-3
(2.8)
202-3
(3.1)
242-3
(3.3)

281-3
(3.4)

6| 19| 67
(69) | (L6)

71 21 75
(71) | (L7)

gl 231 83
i ((73) | (L7)

: 9| 26
[ (7h)

10

90
(L8)
101

28
(75) | (L8)

157
(35)

176

(36) |

194
(36)

212
(37)
230
(38)

325
(28)

363,

(29)

Loo|

836
(21)

935
(22)

1,032

(29)1 (22)

438
(30)

L7s
(30)

1,128
(22)

1,228
(23)

1,527
(17)
1,698
(18)
1,884
(18)
2,059
(19)
2,233
(19)

3,192(8
(1)

3,567 |9
(1h)

3,938
(15)

L, 305
(15)

L,669
(15)

,102
(1)

»055
(11)

9,997
(11)

109-2

(11)

119-2

(12)

176-2
(8.4)
196-2
(8.7)
217-2
(8.8)

237-2
(9.0)
257-2
(9.2)

(6.81j(5.b1
319-2
(7.0)

357-2
(7.2)

3942
(7.L)
L30-2
(7.5)

L67=2
(7.6)

679=2
(5.6)
759-2
(5.8)
838-2
(5.9)
917-2
(6.0)

99 -2
(6.0)

132-3
(L.6)
147-3
(Le7)
162-3
(L.8)
178-3
(4.9)
193-3
(Le9)

319-3
(3.5)

357=-3
(3.6)

394-3
(3.7)
430-3
(3.7)
L67-3
(3.8)

108
(L9)

116
(49)
124
(50)
131
(50)
139
(51)

30
(76)

32
(77)

12

13| 35
("
1L 37
(78)

39
(79)

15

247
(38)
265
(39)
283
(39)
300
(39)

317
(40)

511
(31)
5u8
(31)
584
(31)
620
(32)
656
(32)

1,318
(23)
1,412
(23)

1,505
(24)

1,598
(24)
1,690
(24)

2,406
(19)
2,578
(20)
2,748
(20)
2,918
(20)

3,086
(20)

5,030
(15)
5,389
(15)
5,745
(16)
6,100
(16)

6,453
(26)

128-2

(12)

137-2

(12)

162

(12)

155«2

(12)

164-2

(12)

277-2
(9.3)
296-2
(9.4)
316-2
(9.L)

335-2
(9.5)

355-2
(9.6)

503=2
(7.7)

539-2
(7.8)

574=2
(7.9)

610-2
(8.0)

6L45-2
(8.0)

107-3
(6.1)
115-3
(6.2)
122=-3
(6.2)
130=3
(6.3)
137-3
(6eLs)

207=3
(5.0)
222-3
(5.0)
237-3
(5.1)
252-3
(5.2)
266-3
(5.2)

503-3
(3.8)

539-3
(3.9)
574-3
(3.9)
610-3
(3.9)
6L5-3
(L.0)

(t/u) x 100 ratios in parentheses
The figure following the dash in sample

zeros to add; for example, 319-3 = 319,000.

are for P(A) = .95 (or more)
size numbers shows the number

of




Table of Sampling Plans for £ = |

(/1) x 100 Ratio for which P(A) = .10 (or less)

100

80

65

50

Lo

6.5

(37)
7
(53)
9
(62)
12
(66)
15
(68)

17
(71)

9
(30)
15
(Lb)
21
(50)
26
(54)
31
(56)

37
(58)

20
(25)
33
(36)
L6
(4o)
57
(L)
69
(L6)

80
(L8)

ss
(19)

93
(27)
128
(31)
162
(33)
194
(35)
225
(36)

134
(15)

228
(22)

312
(25)

391/1,215

(27)

L68| 1,454

(28)

543/1,667

(29)

380=2| 760-2
(7.4)1(6.2)

477-2| 954-2
(7.9)|(6.6)

235-2 571-2
(10);(8.3)
273-2| 663=2
(11)| (8.6)

177-3
(2.6)
299=3
(3.7)
409-3
(4e2)
514-3
(4.5)
615-3
(Le7)
713-3
(4e9)

19
(74)
22
(75)
2L
(76)
27
(77)

29
(78)

L2
(59)
L7
(60)

52
(61)

57
(62)

6L
(62)

91
(49)

102
(50)

112
(50)
123
(51)
136
(51)

255
(37)

286
(38)
315
(39)

3L4
(39)

373
(L40)

616|1,915

(30)

689/ 2,140

(30)

760/ 2,363

(31)

831|2,583

(31)

901 | 2,802

(32)

810-3
(5.0)
905-3
(5.1)
100-4
(5.2)
109~
(5.3)
119-4
(5.3)

31
(79)

33
(80)

36
(81)

38
(82)

Lo
(82)

69
(63)

7l
(63)
79
(64)
8l
(64)
89
(64)

17
(52)

157
(52)
167
(53)
178
(53)
188
(53)

Lo2
(LO)
L31
(Lo)
L60
(L)
488
(L)

516
(k1)

1,040
1,109
1’177

1,246

971/3,018

(32)
(32)
(33)
(33)

(33)

3,233
3,447
3,660

3,872

128-4
(5k)
137-4
(5.4)

6=l
(5.5)

155-4
(5.5)
164-4
(5.6)

The figure following the dash in sample size mumbers
zeros to add; for example, 304-3 = 304,000,

(t/) x 100 ratios in parentheses are for P(A) = .95 (or more)

shows the number of




TABIE Li

Table of Sampling Plans for f = 5

n

(t/1) x 100 Ratio for which P(A) = ,10 (or less)

100

8o

65

50

L5

Lo

35

30

25

20

15

12

10

L
(L6)

7
(53)

10
(68)

12
(73)

15
(76)

17
(78)

1
(37)

19
(49)
26
(55)

33
(58)

Lo
(60)

L6
(62)

31
(30)

53
(L0)
72
(L5)
90
(7)

108
(L9)

125
(51)

13
(23)

193
(31)
264
(3L)

331
(36)

396
(38)

L60
(39)

192
(a1)

325
(28)

Lk
(31)
557
(33)

667
(34)

773
(35)

3uk
(19)

581
(25)
795
(27)
998
(29)

1,194
(30)

1,385
(31)

678
(16)

1,145
(22)

1,566
(24)
1,965
(25)
2,352
(26)
2,728
(27)

1,L40
(k)

2,432
(19)

3,327
(21)

4,176
(22)

L, 997
(23)

5,797
(23)

3,599
(12)

6,079
(15)
8,316
(17)
104<2
(18)
125=2
(19)

145-2
(19)

110-2
(9.4)

185-2
(12)

253-2
(1k)
318-2
(1)
381-2
(15)
Ll2-2
(15)

Lé1-2
(7.0)
778=-2
(9.2)
1056-3

(10)

134-3
(11)

160-3
(11)

186-3
(12)

135-3
(5+6)
229-3
(7.5)
313-3
(8.3)

393-3
(8.8)

470-3
(9.1)
slib=3
(9e4)

329-3
(4.8)
556-3
(6.3)
760=3
(7.0)
954=3
(7.4)
1h-4
(7.6)

132-}
(7.8)

10

20
(79)

22
(80)

25
(81)

27
(82)

12

13

15

32 |
(8L)

3u
(8L)
37
(85)
39
(85)

la
(86)

30
(83) | (66

53
(63)
59
(64)
66
(65)

72
(66)

81

U3
(52)
162
(52)
179
(53)
195
(54)

212
(54)

522
(LO)

583
(LO)

6Ll
(1)

704
(L)

763
(L2)

878

(36) |
981 |

(36)
1,083
(37)
1,184
(37)
1,28
(37)

1,572
(32)
1,757
(32)
1,940
(33)
2,121
(33)
2,300
(33)

3,098
(28)

3,L63
(28)

3,823
(29)

4,179
(29)

L,532
(29)

6,583
(2u)
7,357
(24)
8,122
(25)
8,879
(25)
9,630
(25)

165-2

(20)
184-2

(20)
203=2
| (20)
!222-2
(20)

22
(1)

502-2
(16)
561-2
(16)
619-2
(16)
676=2
(16)

734=2
a7)

211-3
(12)

235-3
(12)

260-3

(12)

28L4-3
(12)

308-3
(12)

620-3
(9+6)
692-3
(9+7)
764-3
(9.8)
836-3

(10)

906~3
(10)

150-4
(8.0)
168-)
(8.1)
187-4
(8.2)
203-4
(8.3)
220-4
(8.4)

87
(66)

93
(67)

99
(67)

105
(68)

1
(68)

228
(55)
2Ll
(55)
261
(55)
277
(56)

293
(56)

822
(L2)

881
(L2)
939
(L2)

997
(L3)
1,055
(L43)

1,384
(38)
1,482
(38)
1,580
(38)
1,678
(39)

1,775
(39)

2,478
(3L)
2,655
(34)
2,830
(3L)
3,005
(3L)
3,178
(35)

L,882
(29)

5,230
(30)
5,576
(30)
5,920
(30)
6,263
(30)

104-2
(25)
11-2
(25)
118-2
(26)
126-2
(26)

133-2
(26)

259-2
(21)
278-2
(21)
296-2
(a1)

314-2
(21)

333-2
(21)

790=-2
a7)
8u7-2
amn

903-2
(a7)

958-2
a7)
101-3
a7)

332-3
(13)
356-3
(13)

379-3
(13)
L403-3
(13)
L26-3
(13)

976-3
(10)

105-L
(10)

112-4
(10)
118-4
(10)

125-4
(10)

237-L
(8.5)

25L-L
(8.6)

271-4
(8.6)

288-4
(8.6)
30L4-4
(8.7)

(t/u) x 100 ratios in parentheses

The figure following the dash in sample

zeros to add; for example, 203-2 = 20,300.

are for P(A) = .95 (or more)

s8ize numbers shows the number of
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